

The specification for new driver for UniChrom Data System.

CONTENTS
CONTENTS...2

Basics..4

The Driver ..4

The Callback..4

The Driver Type ...4

The entry point...4

What entry points simple driver must have..4

How the instrument types are distinguished?..5

GC instrument..5

LC instrument ..6

ADC instrument ...7

Sampling system API...7

Timed Events (Valve control) API ..7

Major API constants reference ..8

The real zone names building and usage ..8

Zone Object names building rules and usage..9

Object Parameter (Sensor Parameter) indices ..10

Gas types for gas control zones ..12

Light control state ..12

HPLC pump zones (obsolete)..12

Pump indices (obsolete)...13

LC zone parameter indices (obsolete) ...13

Notification indices rnXXXX used by drvSetState and InstrumentCallback................13

Detailed functions reference..15

drvOpenEx function ...15

drvClose function ...15

drvOpenInstrument function...15

drvCloseInstrument function ..16

drvOpen[Type]ChannelEx and its variations,...17

Different data types and passing it to UniChrom..17

drvCloseChannelEx function..18

drvGetChannelInfo function ...19

drvChannelCalibrate function...19

tcbSetZoneValueEx function..19

tcbGetZoneValueEx function ...20

tcbCheckReadZoneValue function ..20

tcbCheckWriteZoneValue function...20

tcbSetProgRamp function ..20

tcbGetProgRamp function..21

drvSetState function ..21

drvGetState function ..21

fcbSetRecEx function ..21

drvUpdate function...22

drvGetZoneInfo function ..23

smpSetParam function ..23

smpGetParam function ..24

smpSetSample function...25

smpGetSample function...25

evtSetParam function ..26

evtGetParam function ..27

Sample driver ..28

Basics

The Driver

User-mode DLL module that exports special UniChrom API functions, which are

described further in this document.

The Callback

UniChrom supplied function, which the driver should “call back”. It should be called in

“stdcall” calling convention.

The Driver Type

Currently the UniChrom supports three different types of devices which represent

different kinds of chromatography devices. The driver types are: GC instrument, LC

instrument and ADC instrument.

The entry point

Exported functions from DLL. Should be “stdcall” declared.

What entry points simple driver must have
Here are described entry points that must have every type of driver

drvOpenEx,

UniChrom opens the driver passing debug output callback function. Here takes place

per driver initialization.
drvClose,

UniChrom closes the driver on shutting down the application. Here takes place per

driver cleanup.
 drvOpenInstrument or tcbInitialize or fcbInitialize,

Each driver can support several instruments. UniChrom calls this entry point if it is

necessary to “OPEN” instrument and start work with it. Here takes place per instrument

initialization and actual hardware connection. The function returns the handle of

instrument, which should be unique per driver. This handle is passed in subsequent

driver API calls.
drvCloseInstrument,

Per instrument cleanup after session close. Hardware should be brought into initial

state. All resources bound with instrument should be freed.
 drvOpenChannelEx or its variations,

Installation of data path callback for UniChrom. When instrument collects some data, it

passes the pointer or value of data to UniChrom supplied callback. The type of passed

data is determined by callback name.
 drvCloseChannelEx,

Close the data channel which had been previously opened.
 drvGetChannelInfo,

Get the channel description, and signal range for specified channel. Channels are per

instrument fixed. Getting channel information occurs before the channel is opened
 drvGetChannelFrequency,

Returns the data sampling frequency for specified channel.
 drvSetChannelFrequency,

Sets the data sampling frequency for specified channel.

How the instrument types are distinguished?
The instrument types are determined upon loading the driver DLL by presents of several

entry points. The GC driver must export tcbInitialize with same prototype as

drvOpenInstrument. The LC driver must export fcbInitialize with same

prototype as drvOpenInstrument. The ADC driver must export

drvOpenInstrument.

Below the complete list of functions for each driver type are listed.

GC instrument

The GC instrument drivers are determined by presence of tcbInitialize API

function.

The list of functions, the GC driver must support.
drvOpenEx,

drvClose,

 tcbInitialize instead of drvOpenInstrument,

drvCloseInstrument,

 drvOpenChannelEx or its variations,

 drvCloseChannelEx,

 drvGetChannelInfo,

 drvGetChannelFrequency,

 drvSetChannelFrequency,

 drvChannelCalibrate, //only if required

 tcbSetZoneValueEx,

 tcbGetZoneValueEx,

 tcbCheckReadZoneValue,

 tcbCheckWriteZoneValue,

 tcbSetProgRamp,

 tcbGetProgRamp,

 drvSetState,

 drvGetState,

LC instrument

The LC instrument drivers are determined by presence of fcbInitialize API

function.
 drvOpenEx,

drvClose,

drvOpenChannelEx, or its variations

drvCloseChannelEx,

 drvGetChannelFrequency,

 drvSetChannelFrequency,

 drvGetChannelInfo,

 fcbInitialize instead of drvOpenInstrument

 drvCloseInstrument,

drvSetState,

 drvGetState,

 fcbSetZoneValueEx,

 fcbGetZoneValueEx,

 fcbSetRecEx;

ADC instrument

The driver must export the following entry points
drvOpenEx,

 drvClose,

 drvOpenInstrument,

 drvCloseInstrument

 drvOpenChannelEx or its variations

 drvCloseChannelEx,

 drvGetChannelInfo,

 drvGetChannelFrequency,

 drvSetChannelFrequency,

 drvSetState

 drvGetState

Sampling system API

Sampling system API is optional and can be present if the instrument has autosampler

or probably can have it. The results of these functions are analysed to determine

sampling system capabilities.
 smpGetParam,

 smpSetParam,

 smpGetSample,

 smpSetSample,

All types of drivers can have Sampling API entry points.

Timed Events (Valve control) API

Timed events API is optional and can be present only if instrument has any externally

controlled devices like valves, which can change state during analysis at several time

moments.
evtGetParam,

evtSetParam;

All types of drivers can have Timed Events API entry points.

Major API constants reference
All the major constants are present in DEVTYPES.*.

Any further improvements should be checked first in devtypes.

Terms:
Zone – object under control. This object represents the entity which is very similar to

real heating (control) zone of the Instrument.

Zone object has fixed number of sensors. Indices (numbers) of sensors are split into

several categories. Since the real sensor index and the real zone index are encoded in

single dword value, there are constants and mask which allow encode/decode zone

object index and zone sensor index.

Encoded Sensor index = (ZoneType shl 16) or ZoneIndex;
In UniChrom driver model there are following object types (prefix zotXXXX):

Constant mnemonic Value Meaning

zotTemp 0 Object is temperature control sensor

zotFlow 1 Object is gas flow sensor

zotPres 2 Object is gas pressure sensor

zotVel 3 Object is gas linear velocity sensor. Typically this

cannot be measured but can be set.

zotCol 4 Object is gas column flow sensor. Typically this

cannot be measured but can be set.

Zone sensors are using zotXXXX constants for building zXXXX – real sensor names

The real zone names building and usage

Zones Real Zone Name Zone Index building rule

Oven zOven=0 zOven

Injectors zInj=$10000

zInjA zInjA=zInj;

zInjB zInjB=zInj+1

zInjC zInjC=zInj+2;

zInjD zInjD=zInj+3

Detectors zDet=$20000

zDetA zDetA=zDet

zDetB zDetB=zDet+1

zDetC zDetC=zDet+2

zDetD zDetD=zDet+3

Auxiliary thermal

zones

zAux=$30000

zAux1 zAux1=zAux

zAux2 zAux2=zAux+1

zAux3 zAux3=zAux+2

HPLC Pump Zone zPump=zInj

zPumpA zPumpA=zInjA

zPumpB zPumpB=zInjB

zPumpC zPumpC=zInjC

zPumpD zPumpD=zInjD

zSample=zAux

Each zone has several zone objects (control sensors) e.g. zInjA has zoFlowA,

zoFlowB, zoFlowC and zoTemp

Zone Object names building rules and usage

The single gas controller can be accessed as flow controller either as pressure

(velocity) sensor. Anyway the driver should return right values of magnitude being

measured, or return InvalidZoneValue if the zone object index is not applicable for the

object.

Zone Object Type Zone Object Name Building rule

Temperature

sensor

zoTemp = 0;

zoTemp

Flow sensors

zotFlow = 1

zoFlow = $10000

 zoFlowA zoFlowA= zoFlow

zoFlowB zoFlowB= zoFlow + 1

zoFlowC zoFlowC= zoFlow + 2

Pressure sensors

zotPres = 2;

zoPres = $20000

zoPresA zoPresA= zoPres

zoPresB zoPresB= zoPres + 1

zoPresC zoPresC= zoPres + 2

Velocity sensors

zotVel = 3

zoVel = $30000

zoVelA zoVelA = zoVel

zoVelB zoVelB = zoVel + 1

zoVelC zoVelC = zoVel + 2

Column flow sensor

zotCol = 4

zoCol = $40000

zoColA zoColA = zoCol

zoColB zoColB = zoCol + 1

zoColC zoColC = zoCol + 2

Object Parameter (Sensor Parameter) indices

Constant mnemonic Value Description

opNone -1 No parameter for sensor. Unused. Just for

symmetry

opMin 0 Minimal value that sensor can handle.

opMax 1 Maximal --//--

opSet 2 Methodical setpoint for that sensor

opCur 3 Current value of selected sensor

opDrift 4 Delta – absolute value for error, the selected

sensor can assume. The readiness interval. If

the sensor is in range Setpoint +/- Drift – then

all right.

opGas 5 Gas type for selected sensor. Applicable for

gas sensor only.

opProg 6 Boolean flag meaning the sensor is ramp

programmable

opName 7 Unused. There is no way to pass PChar as

long double.

opLight 8 Light/Lamp state for selected Zone, not

sensor. Has meaning only for detector zones.

opEnabled 9 If the sensor is ON/OFF?

opMode 10 Gas control mode for gas sensors. See the

gas control modes.

opColLen 11 Column length in meters for selected sensor.

opColIDm 12 Column internal diameter in mm for selected

sensor.

opType 13 Undefined

opTime 14 time from the start in milliseconds for LC

opPumpSet opSet Pumping flow

opLoadSet 15 Loading eluent flow

opEluent opGas Type of eluent

opPumpType opType type of a pump - 0 - plunger 1 – syringe

opPumpState opMode Pump State: 0=Stopped, 1=Pumping,

2=Loading

Gas types for gas control zones

Constant mnemonic Value Meaning

gtNone -1 None – no gas for this sensor

gtUnknown 0 Unknown gas – gas unlisted in this table

gtNitrogen 1 This sensor controls

Nitrogen flow/pressure/velocity

gtArgon 2 Argon

gtHelium 3 Helium

gtHydrogen 4 Hydrogen

gtAir 5 Air

gtOxygen 6 Oxygen

gtArgonMethane 7 Argon+Methane

Light control state

When the zone has something like lamp or flame, which can be turned on/off or being in

undetermined state, then these values are returned after calling getZoneValueEx with

parameter index opLight

Constant mnemonic Value Meaning

ltNone -1 This zone has not any lights (like injectors)

ltUnknown 0 The state of light is undetermined

ltOff 1 The light is not lit

ltOn 2 The light is lit

HPLC pump zones (obsolete)

The UniChrom HPLC driver model assumes that there can be up to 4 pumps. Each

pump is indexed as lczPumpX and one pressure controller which is a mixer pressure

(lczPress). These indices are used for addressing corresponding objects within HPLC

instrument driver. Setting or getting pump parameters is taken through

drv[Set|Get]ZoneValue(hInstrument,lczPumpA,0,opMax)

Pump indices (obsolete)
Constant mnemonic Value Meaning

lczPumpA 0

lczPumpB 1

lczPumpC 2

lczPumpD 3

lczPress 4

Each object of HPLC instrument has the following:

LC zone parameter indices (obsolete)

Parameter Value Meaning

lcF_0 1 Setpoint for pump flow

lcF_x 2 Actual flow of pump.

lcFmax 3 Maximal flow for pump

lcPmin 4 Minimal pressure in mixer.

lcPmax 5 Maximal pressure for mixer.

lcP_x 6 Actual pressure in mixer.

lcOnline 7 Is the pump online and working? Turn

on/off the pump.

lcCurTime 8 Current analysis time. Not used.

lcAlarm 9 Is the pump in alarm state. This state is

defined by overranging specified Pmax,

Pmin, Fmax

lcPumpType 10 type of a pump -

0 – the pump is plunger type

1 – the pump is syringe type

Notification indices rnXXXX used by drvSetState and
InstrumentCallback

These notification constants are used when UniChrom calls driver for changing device

state (going into pre-run, run, post-run mode). Some of the codes are used in

notification callback. When UniChrom receives rnReconfig – it should reconfigure

sensor placements, because instrument has determined changes in hardware

configurations. The constant rnAll indicates in DeviceCallback changes in sensor

values.

Constant mnemonic Value Description

rnAll -1 Notify that any of the zone parameters have

changed. UniChrom should re-read device set

points.

rnStart -2 Start the instrument. This takes place when

user forcibly starts the instrument. In general

conditions. The instrument detects start

conditions, shows them in data callback and

notifies by DeviceCallback.

rnStop -3 Stop the instrument. Actually break the run and

stop the sequence.

rnReady -4 Not used.

rnSeqFinish -5 Not Used

rnReconfig -100 Driver request UniChrom reconfiguration and

re-reading of device configuration.

Detailed functions reference

drvOpenEx function
function drvOpenEx(ADebugFunction:TDebugWriteStr;AClient:Pointer):BOOL;stdcall;

The function is intended for per driver initialization and installation of debug callbacks.

Please note, that the driver can use STDOUT either as ADebugFunction for printing

diagnostic messages. So the write() and printf() are allowed and welcome in drivers for

getting detailed description of in-driver processes. The STDOUT is captured by

UniChrom and stored in internal debug buffer also painted in internal console, printed to

Win32 console and written to the file if desired. Enabling of debug console is described

in UniChrom users manual and typically consist of running

uwin32.exe –debug[session][:out filename].
The word “debug” enables only internal graphic console. The word “session” brings

Win32 console. Please note, that some output function are buffered and STDOUT is

shared by several threads, so please flush() the output to make your print operations

atomic.

drvClose function
function drvClose()BOOL;stdcall;

The function must perform per driver cleanup. For instance the LabNET, since it uses

only one com port performs it’s initialization in drvOpen and cleanup in drvClose.

drvOpenInstrument function
function drvOpenInstrument(AProfile:integer;

AnAction:TPageNotify;

AClient:pointer):integer;stdcall;

The most important function in instrument configuration, it is used for instrument

initialization.

AProfile – is the number of registry hive, where the instrument configuration is located.

The UniChrom supports up to 16 instruments.

It’s configurations are stored in:

HKLM\Software\New Analytical Systems\UniChrom\I0 ..I15

The keys I0 … I15 are the folders for instrument configurations. E.g. I0 stores config for

first instrument, I1 – for second etc. The configuration hives are built by Configuration

Editor (CE) upon driver installation. The parameters of corresponding hive are

determined by driver *.INF file which is general Windows INF file, described in MS

documentation. The UniChrom particularities are only in parameters only. The

UniChrom expects the following parameter in instrument hive:

@

aka Default value

string Instrument name. CE generates it from

instrument type.

DriverName string The path for driver module. Should be fully

qualified for modules located in non-

standard folders

InfName string CE writes here the name of INF file, which

installs your instrument.

The other parameters are for driver developer. Write and read here what you want, but

please remember – this is HKLM and on NT platform only admin can write here.

AnAction - UniChrom supplied callback which driver calls upon changing its state. E.g.

– going into PRERUN, RUN, POSTRUN, IDLE state must be informed to UniChrom.

The device states are set/get through drvGetState/drvSetState. The callback should be

called with notification codes, which are named rnXXX (remote notification). Should be

stored and then passed in further calling of TPageNotify(AnAction)(AClient…)

AClient – the client handle – should be stored and then passed in further calling of

TPageNotify(AnAction)(AClient…)

The function must return non NULL handle of instrument initialized and ready to work.

The NULL return value means problem.

drvCloseInstrument function
function drvCloseInstrument(HInstrument:integer):BOOL;stdcall;

This function closes the instrument previously opened with drvOpenInstrument.

HInstrument – Handle of instrument, which was previously returned by

drvOpenInstruement.

drvOpen[Type]ChannelEx and its variations,
function drvOpen[Type]ChannelEx(HInstrument:IHandle;

AnAction:T[Type]Callback;

AClient:pointer;

AChannel:integer):BOOL;stdcall;

This function is called when user presses the “Start” button in UniChrom, and opens the

selected instrument channels. The instrument channel numbers have no special

meanings. Typically the channel numbers 0...N-1 are intended for the analytical signals.

After that channels can be any diagnostic or special channels. Please note, that

UniChrom calculates measurement time from the number of point it actually got and

from frequency, the instrument reports for selected channel.

 Please note, that in UniChrom user interface channels are numbered from 1 to N.

 Please note, that [Type] – must be one of the following, which UniChrom

supports: Point, Block, Int32, Int64, Float, and Double.

Channels type:

• Point – Data is the single 32 bit signed integer. Point means single signal point at

one function call.

• Block – Data is the pointer to array of 32 bit values containing 24 bit integers

formatted according LNet specification.

• Int32 – Data is the pointer to array of 32 bit integers.

• Int64 – Data is the pointer to array of 64 bit integers.

• Float – Data is the pointer to array of 4-byte IEEE float numbers.

• Double – Data is the pointer to array of 8-byte IEEE float numbers.

Different data types and passing it to UniChrom

The driver writer decides what type of data comes from driver. The data type is

determined by name of driver–exported entry points. The driver must export only one of

these routines.
drvOpenPointChannelEx

drvOpenBlockChannelEx

drvOpenInt32ChannelEx

drvOpenInt64ChannelEx

drvOpenFloatChannelEx

drvOpenDoubleChannelEx

If the driver declares that it produce the data of [Type] then it must export

drvOpen[Type]ChannelEx entry point. When the data is ready for passing it to

UniChrom, the driver must call T[Type]Callback with parameters which came from

drvOpen[Type]ChannelEx entry point.

The callback prototypes are placed below:
TPointCallback=Procedure(Self:pointer;data:integer;stat:integer);stdcall;

TBlockCallback=Procedure(Self:pointer;PBuf:PIntArray;cbLen:integer);stdcall;

TInt32Callback=procedure(Self:pointer;PData:PDwordArray;cbLen:integer;stat:integer);st

dcall;

TInt64Callback=procedure(Self:pointer;PData:PQwordArray;cbLen:integer;stat:integer);st

dcall;

TFloatCallback=procedure(Self:pointer;PData:PFloatArray;cbLen:integer;stat:integer);st

dcall;

TDoubleCallback=procedure(Self:pointer;PData:PDoubleArray;cbLen:integer;stat:integer);

stdcall;

The values meaning and its purpose

Self - the Object instance pointer of Method window which actually controls the

instrument. Should be interpreted as handle, which is unique per application. Must not

be zero. The pointer to callback function driver and object handle the driver gots in

drvOpen[Type]ChannelEx . The callback function can be called in context of

arbitrary thread. Preferable it would be called once or twice per second for quasi-

realtime data display. Obviously there is no need in calling the callback, when no data is

arrived after the last call.

PData – driver internal pointer to data, ready for passing to UniChrom. It is desirable not

to change the data until the function returns. The UniChrom callbacks are written for fast

return if data portions are not so big.

Stat – the status of current operation. The actual data collection startup takes place

when here is placed dsStarting. Please see the dsXXXX constants in devtypes.*

drvCloseChannelEx function
function drvCloseChannelEx(HInstrument:IHandle;AChannel:integer):BOOL;stdcall;

The function must close the instrument channel previously opened with the call of

drvOpen[Type]ChannelEx. Do per-channel cleanup. The comm. resources can be

freed if the last channel closes.

drvGetChannelInfo function
function drvGetChannelInfo (HInstrument:IHandle;

 AChannel:integer;

 var DevInfo:TDeviceInfo):BOOL;stdcall;

This function is called by UniChrom to determine information on particular channel. The

DevInfo structure contains several members which have the following meaning:

DevInfo.FullScale – full scale in bits e.g. 24 bit device should place here 0x00FFFFFF;

DevInfo.DevMin – minimal value of units the channel can measure e.g. -2.5 Volts or 0

picoamperes.

DevInfo.DevMax - maximal value of units the channel can measure e.g. +2.5 Volts or

3000 picoamperes.

DevInfo.Flags – currently interpreted as const PChar name for selected channel

number. E.g. some chromatograph can return the string like “FID” or “Unknown”

drvChannelCalibrate function
function drvChannelCalibrate(HInstrument:IHandle;

 AChannel:integer;Adata:double):double;stdcall;

This function is optional and is used for postprocessing the measured data. The main

task for this function is to remove float calculation from driver callback. When the driver

stores measured data calling UniChrom with T[Type]CallBack(…) the UniChrom

must store data ASAP and return immediately without stopping driver data measuring

loop. The calibration (even filtering) takes place later by calling for each obtained point

the function drvChannelCalibrate.When no additional processing is necessary, the

driver must not export this entry point.

AData – the double data which the unichrom had stored internally. Typically it is the int

which comes from driver but converted into double representation.

tcbSetZoneValueEx function
function tcbSetZoneValueEx(HInstrument:IHandle;

 AZone,AZoneObject,AParamIndex:integer; AValue:extended):BOOL;stdcall;

GC instrument API function. Used for setting zone sensor parameters.

Zone –the zone of GC device which can be controlled e.g. Detector, Injector, Oven, etc.

Each zone can have several sensors – temperature, flow, pressure and each sensor

can have different functions (carrier gas, makeup gas, fuel gas etc.).

AZone is the index of control zone. Indices have prefix zXXXX. E.g. zInjA, zOven,

zAux1.

AZoneObject is index of control object in zone. Objects have prefix zoXXXX. E.g.

zoTemp, zoFlowA, zoPress.

AParamIndex is the index of parameter which is set for selected sensor. Parameter

indices have prefix opXXXX. E.g. opMin, opMax, opSet, opGas.

AValue – long double parameter of sensor. E.g. flow setting for Inlet 1 carrier gas flow of

10.5 would look like

tcbSetZoneValueEx(hIns, zInjA, zoFlowA, opSet, 10.5).

If the parameter is not suitable for object, the function must return FALSE.

tcbGetZoneValueEx function
function tcbGetZoneValueEx(HInstrument:IHandle;

 AZone,AZoneObject,AParamIndex:integer):extended;stdcall;

The function is intended for getting object parameter. See the description of

tcbSetZoneValueEx.The function returns long double. If the parameters passed in

function are not suitable, the driver must return InvalidValue=-1000

tcbCheckReadZoneValue function
function tcbCheckReadZoneValue(HInstrument:IHandle;

 Zone,AZoneObject,AParamIndex:integer):BOOL;stdcall;

The function is used to check the zone for presence or for readability. The driver should

return FALSE if the sensor being asked could not be read.

tcbCheckWriteZoneValue function
function tcbCheckWriteZoneValue(HInstrument:IHandle;

 AZone,AZoneObject,AParamIndex:integer):BOOL;stdcall;

The function is intended for checking the write ability of sensor. The function must return

FALSE if sensor could not be written;

tcbSetProgRamp function
function TtcbSetProgRamp(HInstrument:IHandle;

 AZone,AZoneObject,ARampIndex:integer;PRec:PRamp):BOOL;stdcall;

The function is intended for setting the parameter change ramp. Some of GC

instruments allow temperature or flow parameters to be ramped e.g. broken into several

time-dependent changes.

PRec – the pointer to a structure, which has the following members.

PRec.ValRate – the change rate of selected sensor till the Plato reached.

PRec.FinalVal – the value of plato section which should be reached after growing

parameter with ValRate.

PRec.IsoTime – the period which the plato should continue.

The function must return true if the ramp is accepted. After sending all ramps to driver,

the UniChrom calls this entry with ARampIndex equal to –(RampCount) (negative

number of ramps). This is used for checking. The function must return TRUE after

check is done.

tcbGetProgRamp function
function tcbGetProgRamp(HInstrument:IHandle;

 AZone,AZoneObject,ARampIndex:integer;PRec:PRamp):BOOL;stdcall;

The function is intended for getting program ramps from instrument.

drvSetState function
function drvSetState= (HInstrument:IHandle;AState:integer):BOOL;stdcall;

The very important function intended to manage the device state. I.e. the PRERUN,

RUN, POSTRUN and IDLE conditions. The dsXXXX constants are used as AState.

The driver must confirm or decline state changing.

Example: UniChrom makes the instrument go into prerun –
drvSetState(hIns,dsPrerun)

drvGetState function
function drvGetState(HInstrument:IHandle):integer;stdcall;

The function must return the actual state of instrument. States are described by

dsXXXX constants.

Example: UniChrom checks the postrun conditions before switching to next sample

if (drvGetState(hins)=dsPostRun) then … do some actions

fcbSetRecEx function
function fcbSetRecEx(HInstrument:IHandle;

 AZone,AZoneObject:integer;PRec:PFlowRec):BOOL;stdcall;

Function for setting flow gradient ramps in HPLC system.

The zone model for HPLC system is consisting of the following.

AZone – always 0 for now

AzoneObject – index of program ramp item being loaded 0-based

PRec - pointer to record of the following structure:
TPumpRamp=packed record

Time,Flow,Flow1,Flow2,Flow3,Flow4:double;

end;

Where: Time – time in minutes of flow program segment,

Flow – total flow of all pumps in ml/min;

Flow1,Flow2,Flow3,Flow4 – gradient values of flow in parts of 1.

When the PRec is nil and AZoneObject is less than 0, that is the check for ramp count.

Absolute value of AZoneObject is the total gradient ramp count.

drvUpdate function
function drvUpdate(HInstrument:IHandle;AFlag:integer):boolean;stdcall;

The function set the method locking. It is very similar to transaction control. Because all

method parameters are loaded by UniChrom application step by step, we have to know

when the method upload is complete. There is two ways of determining this:

1. Start counting time, when any of the xxxSet function called, then wait for 3

seconds and the pass the method to instrument.

2. Increase the method lock count after calling drvUpdate(dlBeginUpdate), and

pass the method to instrument after subsequent calls of

drvUpdate(dlEndUpdate) will decrease the lock count to 0.

Cancel the method upload and clear the clock count after drvUpdate(dlCancelUpdate)
The UniChrom does the following actions when loading the method:

drvUpdate(dlBeginUpdate); // increase lock count to 1

drvUpdate(dlBeginUpdate); // lock count is 2

drvSetZoneValueEx(…..)
drvUpdate(dlEndUpdate); // lock count is 1

drvUpdate(dlBeginUpdate); // lock count is 2

drvSetZoneValueEx(…..)
drvUpdate(dlEndUpdate); // lock count is 1

drvUpdate(dlEndUpdate); // lock count is 0 – upload the method to instrument;

drvGetZoneInfo function
function drvGetZoneInfo(HInstrument:IHandle;AZone,AZoneObject:integer;lpBuf:PChar;var

cb:Integer):boolean;stdcall;

The unction is intended for getting textual information from specified zone. The cb

parameter should contain the exact buffer size. Data is returned as null-terminated

string. UniChrom is calling this entry point for text information, which actions the

instrument does. If AZone and AZoneObject both equal to -1, the driver can report the

entire instrument state.

smpSetParam function
function smpSetParam(HInstrument:IHandle;

 ATower,AParamIndex,AParam:integer):bool;stdcall;

The function sets sampling system parameters. The parameters like number of washes

in ALS are set here.

Please remember:

Samples are 1-based

Towers are 1-based

The injection source is a critical parameter and it is set by UniChrom before loading the

sequence. The following indices are used for injection source selection

smpiInjectionSource = 1;

 smpManual = 0;

 smpALS = 1;

 smpValve = 2;

The object on which the function is execute is determined by ATower parameter. This

paramenter is not exactly the tower but the number of injection unit. For gas sampling it

may be the valve number. The prefix twiXXXX means tower info, ssXXXX means

sampling system.
 twiAny = -1;

 ssAny = twiAny;

The sampling system parameters that can be set by this function are determined by set

of smpiXXXX (sample parameter index) constants. Each parameter represents one

sampling system attribute:
// Sampling system parameters

 smpiSolventWash = -4; // number or time of washing

 smpiSamplePump = -5; // number or time of sample pumping

 smpiInjSpeed = -6; // speed or time of sample injection

 smpiLoadSpeed = -7; // speed or time of sample loading

 smpiDwellTime = -8; // dwelling time in injector

// HP6890-added parameters

 smpiSolventAPreWash = smpiSolventWash;

 smpiSolventBPreWash = -9; //number or time of washing...

 smpiSolventAPostWash = -10; // ...in two solvents...

 smpiSolventBPostWash = -11; // ...before and after injection

 smpiSamplePreWash = -12; // washing in sample before injection??

 //smpiSamplePump = -5; // number or time of sample pumping

 //smpiInjSpeed = -6; // speed or time of sample injection (0 or 1 for HP)

 smpiViscosityDelay = smpiLoadSpeed;

 smpiPreInjectionDwell = smpiDwellTime; // dwelling times in injector...

 smpiPostInjectionDwell = -13; // before and after injection, in 0.01 mins (0-100)

 smpiSampleSkimDepth = -14; // skim depth

smpGetParam function
function smpGetParam(HInstrument:IHandle;ATower,AParamIndex:integer):integer;stdcall;

The function is intended for getting sampling system parameters.

ATower – number of sampling subsystem (Tower, Syringe, etc). The parameters of

entire sampling system like number of towers are got with ATower=ssAny

AParamIndex – sample parameter index has the prefix smpiXXXX.

// getting parameters of chosen sample

smpGetParam(hInst,1,1,smpiPos) //- get the tray position of 1-st sample in sequence

smpiStatus = -1; //the number of installed towers

smpiTowerMax = -2; // the number of positions for tower

smpiTotal = -3; // total number of samples

// these examples shows getting information on sampling system in total

// // get the number of installed towers

smpGetParam(hInst,twiAny,smpiTotal)

smpGetParam(hInst,2,smpiStatus) // - get the status of second tower

smpSetSample function
function smpSetSample(HInstrument:IHandle;

 ASamp,ATower,AVial,ACount,AVolume:integer):boolean;stdcall;
The sample sequence is loaded using the smpSetSample function.

Parameters:

 HInstrument – instrument handle

 ASamp – index of sample being asked (1-based)

 ATower – this sample would be injected from ATower (1-based)

 AVial – this sample would be injected from vial numbered AVial

 ACount – this sample would be injected ACount times.

 AVolume of this sample would be injected

After loading the sequence the UniChrom would call
smpSetParam(hInst,twiAny,smpiTotal,SequenceLength);

This is used to indicate the total number of samples in the sequence. This can be used

as trigger for loading the sequence into instrument.

The Injection volume is passed in nanoliters (10-9 of liter). E.g. injection of 2 µL would

pass to the driver value of 2000.

smpGetSample function
function smpGetSample(HInstrument:IHandle;ASamp,AParamIndex:integer):integer;stdcall;

The sequence can be loaded form driver using smpGetSample function.

Parameters:

 HInstrument – instrument handle

 ASamp – index of sample being asked (1-based)

 AParamIndex – parameter of sample being asked. The parameter index have

prefix smpiXXXX (sample parameter index)

This function must reply only to indices listed below:
 // indices for getting sample parameters

 smpiTower = 0; // sample is injected by tower

 smpiPos = 1; // position of chosen sample in tray

 smpiVolume = 2; // injection volume of chosen sample

 smpiCount = 3; // number of injections

// returns the vial number of selected sample in sequence

smpGetSample(hIns,2,smpiPos);

The Injection volume is returned in nanoliters (10-9 of liter).

evtSetParam function
function evtSetParam(HInstrument:IHandle;

 AEvent,AParamIndex,AParam:integer):bool;stdcall;

The function Parameters:

hInstrument – Instrument handle

AEvent – number of event being modified

AParamIndex – index of parameter for event being modified.

AParam – the value of parameter passed to the driver

The function is intended for passing timed event also as valve control event to driver.

Timed event table event table is loaded into driver when UniChrom goes into PRERUN

state. Look at the event table editor in UniChrom (Spectrum Window / Samples /

Additional Parameters).

The event is consists of the following:

• The time when the event must occur. Relative from analysis start. User enters

the time in currently selected units. The driver gets the time in milliseconds.

• The valve or the object number. 32-bit Integer value. Number them as you wish,

but describe in manual.

• The valve or object state. 32-bit Integer value. Obviously the valves that can

ON/OFF have the state of 0 or 1. When the valve is more complex object, the

state can be from –MaxInt to +MaxInt;

Parameter indices are prefixed vpiXXXX (valve param index).
 vpiValve = 1000; // number of referenced valve
 vpiType = 1001; // type of referenced valve

 vpiInlet = 1002; // inlet to which referenced valve is connected

 vpiState = 1003; // state of referenced valve

 vpiTime = 1004; // time of valve event

 vpiVolume = 1005; // loop volume

 vpiLoadTime = 1006; // time for blowing sample loop with sample gas

 vpiInjectTime = 1007; // time for connecting sample loop to inlet

 vpiCount = -1;
Typically the UniChrom behaves in the following way:

// the event 0 manages valve numbered AValve

evtSetParam(hInst,0,vpiValve,AValve);

// the event 0 would occur at Atime milliseconds

evtSetParam(hInst,0,vpiTime,Atime);

// the event 0 would change state of Valve AValve to AState

evtSetParam(hInst,0,vpiState,AState);

// Set the total number of events

evtSetParam(hInst,0,vpiCount,ACount);

The UniChrom finishes loading of event table by settings the event count. This could be

used as trigger for loading the event table into instrument.

evtGetParam function
function evtGetParam (HInstrument:IHandle;AEvent,AParamIndex:integer):integer;stdcall;

The function is complementary for evtSetParam (see above) and is intended for getting

timed event table. Parameters:

 hInstrument – instrument

 AEvent – number of event being asked (from 0 to MaxInt)

 AParamIndex – index of parameter for event being asked.

Typically the UniChrom behaves in the following way:
// the event 0 manages valve numbered AValve

AValve := evtGetParam(hInst,0,vpiValve);

// the event 0 would occur at Atime milliseconds

Atime := evtGetParam(hInst,0,vpiTime);

// the event 0 would change state of Valve AValve to AState

AState := evtGetParam(hInst,0,vpiState);

// get the total number of events

ACount := evtGetParam(hInst,0,vpiCount);

The UniChrom analyses the on function return. If the returned value is equal to

InvalidZoneValue then the error occurred.

Sample driver
The following is the description of sample ADC driver for UniChrom written on MS VC.

First we must define exported symbols in “def” file

SampADC.def

EXPORTS

 drvOpenEx

 drvClose

 drvOpenInstrument

 drvCloseInstrument

 drvOpenInt32ChannelEx

 drvCloseChannelEx

 drvGetChannelInfo

 drvGetChannelFrequency

 drvSetChannelFrequency

and define them in “h” file

SampADC.h

#ifdef SAMPADC_EXPORTS

#define SAMPADC_API __declspec(dllexport) __stdcall

#else

#define SAMPADC_API __declspec(dllimport) __stdcall

#endif

BOOL SAMPADC_API drvOpenEx(TDebugWriteStr ADebugFunction,void*

AClient);

BOOL SAMPADC_API drvClose(void);

int SAMPADC_API drvOpenInstrument(int AProfile,TPageNotify

AnAction,void* AClient);

BOOL SAMPADC_API drvCloseInstrument(int HInstrument);

BOOL SAMPADC_API drvOpenInt32ChannelEx(IHandle

HInstrument,TInt32Callback AnAction,void* AClient,int AChannel);

BOOL SAMPADC_API drvCloseChannelEx(IHandle HInstrument,int

AChannel);

BOOL SAMPADC_API drvGetChannelInfo(IHandle HInstrument,int

AChannel,TDeviceInfo* DevInfo);

float SAMPADC_API drvGetChannelFrequency(IHandle HInstrument,int

AChannel);

float SAMPADC_API drvSetChannelFrequency(IHandle HInstrument,int

AChannel,float freq);

Then we have to realize these functions in “cpp” file

Every DLL must have DLLMain function

BOOL APIENTRY DllMain(HANDLE hModule,

 DWORD ul_reason_for_call,

 LPVOID lpReserved

)

{

switch (ul_reason_for_call)

 {

 case DLL_PROCESS_ATTACH:

 case DLL_THREAD_ATTACH:

 case DLL_THREAD_DETACH:

 case DLL_PROCESS_DETACH:

 break;

}

return true;

}

Then drvOpenEx function accepts two parameters. It must store them for future use as

debug info logging callback. Then this function could make some initializing actions that

have to be done once.

BOOL SAMPADC_API drvOpenEx(TDebugWriteStr ADebugFunction,void*

AClient)

{

 //store ADebufFunction and AClient

 // do some initialization

 return true;

}

